Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Matthias Nolte, Ingo Pantenburg and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail:

For details of how these key indicators were automatically derived from the article, see
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.084$
Data-to-parameter ratio $=12.5$ http://journals.iucr.org/e. respion
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$, heptaammonium bis(hydrogenphosphate) phosphate

The asymmetric unit of the compound $\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ consists of two hydrogen phosphate anions, one phosphate anion and seven ammonium cations, all of them located in general positions. The two $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]^{2-}$ anions are linked to the PO_{4}^{3-} anion via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to form a three-anion unit, which is surrounded by the ammonium cations. The anions and cations are further connected via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

The crystal chemistry of ammonium phosphate and hydrogen phosphates has been the subject of intense work for several decades. Mootz \& Wunderlich (1970) reported the crystal structure of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ has been investigated on the basis of a single-crystal structure determination by Khan et al. (1972). However, a mixed compound containing both hydrogen phosphate and phosphate anions has so far not been investigated by single-crystal X-ray diffraction. In our own work, we have now synthesized and structurally characterized the title compound, $\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$. All H atoms were located in a difference map and therefore the actual hydrogen-bonding pattern was determined. Additionally, we can distinguish between the PO_{4}^{3-} and HPO_{4}^{2-} anions by comparing the bond lengths and angles in the anions with the values found in the literature (Mootz \& Wunderlich, 1970; Khan et al., 1972).

The structure of $\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ consists of HPO_{4}^{2-}, PO_{4}^{3-} and NH_{4}^{+}tetrahedra, which are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 1). The interatomic distances

Figure 1

The crystal structure of the title compound, with the atom-labelling scheme, showing a view of a group of three anions, which is surrounded by ammonium cations. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size and O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $-x+1, \frac{1}{2}+y,-z+2$.]

Received 6 April 2005 Accepted 18 April 2005 Online 23 April 2005
and angles have normal values. One of the four $\mathrm{P}-\mathrm{O}$ bonds within the PO_{4} tetrahedron of both crystallographically independent HPO_{4}^{2-} anions is longer than the remaining three, which is typical for a $\left[\mathrm{PO}_{3}(\mathrm{OH})\right]^{2-}$ group. Also typical for such groups are the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles (Table 1). The average value of the angles containing the $\mathrm{P}-\mathrm{O}(\mathrm{H})$ bonds is 107.4°, smaller than the ideal tetrahedral angle, whereas the angles not involving the $\mathrm{P}-\mathrm{O}(\mathrm{H})$ group are larger (average 111.4°). Within the PO_{4}^{3-} anion, all bond lengths and angles are comparable (Table 1). This also holds for the values of the O -$\mathrm{P}-\mathrm{O}$ angles (Table 1).

In the crystal structure of the title compound, the PO_{4}^{3-} anions are connected to the two crystallographically independent hydrogen phosphate anions via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, to form linear groups of three anions (Fig. 1). Two different $\mathrm{PO}_{4}^{3-} \mathrm{O}$ atoms act as acceptors and are involved in this interaction. The three-anion groups are isolated from each other by a cage of ammonium cations (Figs. 1 and 2).

Each H atom of the NH_{4}^{+}ion interacts with the phosphate and hydrogen phosphate O atoms via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. From this arrangement a complex three-dimensional network is formed. Relevant interatomic distances and angles are listed in Table 2.

Experimental

$\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$ was prepared under solvothermal conditions. Equimolar quantities of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ were placed in a Teflon container with a capacity of 10 ml . The container was halffilled with 25% aqueous ammonia solution and sealed in a steel autoclave. After heating to 453 K over a period of 10 h , maintaining that temperature for 6 d and then cooling to room temperature over 3 d , the resulting material was transferred to a beaker. A suitable colourless single crystal ($0.5 \times 0.25 \times 0.25 \mathrm{~mm}$) was carefully selected out of the mother liquor under a microscope and mounted with some mother liquor in a glass capillary for subsequent structure analysis. The crystals decompose rapidly in contact with air, with release of ammonia. Recrystallization from water led to crystals of the composition $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (Khan et al., 1972).

Crystal data

$\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$
$M_{r}=413.22$,
Monoclinic, $P_{2} 2_{1}$
$a=10.4667(17) \AA$
$b=6.2976(7) \AA$
$c=14.072(2) \AA$
$\beta=103.738(19)^{\circ}$
$V=901.0(2) \AA^{\circ}$
$Z=2$

Data collection

Stoe IPDS I diffractometer

φ scans

Absorption correction: numerical
(X-RED; Stoe \& Cie, 2001), after optimizing the crystal shape using
X-SHAPE (Stoe \& Cie, 1999).
$T_{\text {min }}=0.902, T_{\text {max }}=0.962$
8608 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.084$
$S=1.06$
4004 reflections
320 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0526 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.081 (5)
Absolute structure: Flack (1983), 1786 Friedel pairs
Flack parameter: -0.02 (8)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

P1-O14	$1.5210(20)$	P2-O21	$1.5740(20)$
P1-O12	$1.5233(18)$	P3-O34	$1.5312(18)$
P1-O13	$1.5237(17)$	P3-O32	$1.5352(18)$
P1-O11	$1.5730(20)$	P3-O33	$1.5356(19)$
P2-O24	$1.5230(20)$	P3-O31	$1.5548(19)$
P2-O23	$1.5266(17)$	O11-H111	$0.87(4)$
P2-O22	$1.5292(18)$	O21-H211	$0.72(6)$
O14-P1-O12	$110.20(12)$	O24-P2-O21	$108.55(12)$
O14-P1-O13	$111.85(11)$	O23-P2-O21	$108.38(11)$
O12-P1-O13	$112.33(11)$	O22-P2-O21	$105.51(11)$
O14-P1-O11	$108.96(12)$	O34-P3-O32	$110.16(11)$
O12-P1-O11	$109.20(12)$	O34-P3-O33	$110.71(11)$
O13-P1-O11	$104.07(11)$	O32-P3-O33	$109.56(11)$
O24-P2-O23	$111.42(11)$	O34-P3-O31	$110.92(11)$
O24-P2-O22	$111.24(11)$	O32-P3-O31	$108.16(11)$
O23-P2-O22	$111.48(10)$	O33-P3-O31	$107.24(11)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O11-H111 $\cdots{ }^{\text {O }} 33^{\text {i }}$	0.87 (4)	1.69 (5)	2.535 (3)	164 (5)
O21-H211 \cdots O31	0.72 (6)	1.79 (6)	2.510 (3)	177 (8)
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 21^{\text {i }}$	0.88 (2)	2.04 (2)	2.899 (3)	165 (4)
$\mathrm{N} 1-\mathrm{H} 12 \cdots \mathrm{O} 33$	0.90 (2)	1.93 (2)	2.802 (3)	163 (3)
N1-H13 . . O34 ${ }^{\text {ii }}$	0.86 (2)	1.97 (2)	2.828 (3)	174 (3)
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 14^{\text {i }}$	0.88 (2)	1.92 (2)	2.789 (3)	170 (4)
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O} 4^{\text {iii }}$	0.88 (2)	2.01 (2)	2.847 (3)	159 (3)
N2-H22 . O 24	0.89 (2)	2.05 (3)	2.833 (3)	146 (4)
$\mathrm{N} 2-\mathrm{H} 23 \cdots \mathrm{O} 3{ }^{\text {iv }}$	0.88 (2)	2.03 (2)	2.907 (3)	176 (3)
N2-H24. . O34	0.89 (2)	1.88 (2)	2.768 (3)	174 (4)
N3-H31 \cdots O23 ${ }^{\text {v }}$	0.89 (2)	1.93 (2)	2.814 (3)	176 (4)
N3-H32 . O 14	0.89 (2)	1.93 (2)	2.776 (3)	158 (3)
N3-H33 . . O32 ${ }^{\text {v }}$	0.86 (2)	1.95 (2)	2.801 (3)	173 (4)
$\mathrm{N} 3-\mathrm{H} 34 \cdots \mathrm{O} 12^{\text {iv }}$	0.87 (2)	1.94 (2)	2.797 (4)	170 (3)
$\mathrm{N} 4-\mathrm{H} 41 \cdots \mathrm{O} 13^{\text {iv }}$	0.85 (2)	1.99 (2)	2.840 (3)	172 (3)
$\mathrm{N} 4-\mathrm{H} 42 \cdots \mathrm{O} 22^{\text {iv }}$	0.89 (2)	1.95 (2)	2.818 (4)	166 (3)
$\mathrm{N} 4-\mathrm{H} 43 \cdots \mathrm{O} 2{ }^{\text {vi }}$	0.88 (2)	2.01 (2)	2.872 (3)	167 (3)
N4-H44. . O 24	0.86 (2)	1.94 (2)	2.791 (3)	167 (4)
N5-H51 \cdots O22	0.89 (2)	1.93 (2)	2.794 (3)	165 (3)
N5-H52 . ${ }^{\text {O }} 13^{\text {iv }}$	0.88 (2)	2.03 (2)	2.879 (4)	163 (3)
N5-H53 . O13 $3^{\text {vii }}$	0.90 (2)	1.88 (2)	2.764 (3)	169 (3)
N5-H54. . O14	0.86 (2)	1.93 (2)	2.796 (3)	178 (4)
N6-H61 . ${ }^{\text {O }} 12{ }^{\text {vii }}$	0.87 (2)	1.94 (2)	2.807 (3)	173 (3)
N6-H62 . O 22	0.88 (2)	1.92 (2)	2.797 (3)	174 (4)
N6-H63 . ${ }^{\text {O }} 23^{\text {vi }}$	0.87 (2)	1.96 (2)	2.821 (4)	169 (3)
N6-H64. . $\mathrm{O}^{\text {2 }} 4^{\text {viii }}$	0.87 (2)	1.93 (2)	2.761 (3)	160 (4)
N7-H71 . ${ }^{\text {O }} 32{ }^{\text {ix }}$	0.88 (2)	1.91 (2)	2.776 (3)	166 (3)
N7-H72...O32	0.89 (2)	1.89 (2)	2.765 (3)	166 (3)
N7-H73 . ${ }^{\text {O }} 31{ }^{\text {iv }}$	0.86 (2)	2.17 (2)	2.977 (3)	156 (3)
N7-H73 . ${ }^{\text {O }} 33{ }^{\text {iv }}$	0.86 (2)	2.55 (3)	3.266 (3)	141 (3)
N7-H74..O12 ${ }^{\text {x }}$	0.89 (2)	1.97 (2)	2.850 (3)	169 (5)

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+2$; (ii) $x, y+1, z ;$ (iii) $-x+1, y-\frac{1}{2},-z+2$; (iv)
$x, y-1, z ;\left(\right.$ v) $x-1, y, z ;\left(\right.$ vi) $-x+1, y-\frac{1}{2},-z+1 ;$ (vii) $-x, y-\frac{1}{2},-z+1 ;$ (viii) $x, y-1, z ;(\mathrm{v}) x-1, y, z ;$ (vi) $-x+1, y-\frac{1}{2},-z+1 ;$ (vii) $-x, y$
$-x+1, y+\frac{1}{2},-z+1 ;($ ix $)-x+2, y-\frac{1}{2},-z+2 ;(\mathrm{x}) x+1, y-1, z$.

Figure 2
The crystal structure of $\left(\mathrm{NH}_{4}\right)_{7}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)$, viewed along the crystallographic b axis. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

All H atoms were located in a difference Fourier map and refined freely with isotropic displacement parameters.

Data collection: IPDS (Stoe \& Cie, 1996); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: CIF-Editor (Wieczorrek, 2004).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Brandenburg, K. (1996). DIAMOND. Release 1.0.3. University of Bonn, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Khan, A. A., Roux, J. P. \& James, W. J. (1972). Acta Cryst. B28, 2065-2069.
Mootz, D. \& Wunderlich H. (1970). Acta Cryst. B26, 1826-1835.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany. Stoe \& Cie (2001). X-RED. Version 1.22. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1996). IPDS. Version 2.87. Stoe Publications 4801-007. Stoe \& Cie, Darmstadt, Germany.
Wieczorrek, C. (2004). CIF-Editor. Version 2.0. University of Köln, Germany.

